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Amplification of weak signals and stochastic resonance via on-off intermittency
with symmetry breaking
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Nonlinear dynamical systems possessing reflection symmetry have an invariant subspace in the phase space.
The dynamics within the invariant subspace can be random or chaotic. As a system parameter changes, the
motion transverse to the invariant subspace can lose stability, leading to on-off intermittency. Under certain
conditions, the bursting behavior is symmetry breaking. We demonstrate the possibility of observing multipli-
cative noise~chaos!-induced amplification of weak signal and stochastic resonance via on-off intermittency
with symmetry breaking in a general class of symmetrical systems. Differences of this mechanism of stochastic
resonance to that in noisy bistable or threshold systems are discussed.@S1063-651X~99!09710-X#

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

The phenomenon of stochastic resonance has been a
ject of great interest since it was first proposed in the stud
the geophysical dynamics@1#. The idea is that a signal can b
amplified by the dynamics of a system in the presence
noise. The most frequently studied system is the motion
particle in a symmetric double-well potential that is su
jected to a periodic modulation and a Gaussian white no
The amplitude of the modulation is so small that, by itself
cannot induce any transition between the two potential we
On the other hand, the added white noise can induce s
transitions and controls the time scale of the tunneling
tween the two potential wells. A resonance occurs when
time scale matches the time period of the modulation. T
phenomenon has been explored in various fields and m
new applications have been discoved, see Ref.@2# for a re-
view of the phenomenon and further references. In gene
three basic ingredients are required for a system to dis
stochastic resonance, including a form of threshold or ene
barrier, a weak coherent input, and a noise source whic
inherent in the system or added to the weak input. T
source of ‘‘noise’’ can be some form of chaotic dynamics
deterministic systems, because deterministic chaos resem
the features of noise on a coarse-grained time scale. W
these features, the system can display increased sensitiv
the weak input at an optimal noise level.

In this paper, we present a mechanism for realizing s
chastic resonance in a general class of dynamical sys
with reflection symmetry. Due to this symmetry, the syst
possesses an invariant subspace in its phase space. W
interested in the case where the motion within this subsp
is random or chaotic. As a system parameter changes
stability of the subspace can be altered and the system
display unusual dynamical behaviors, among which are
off intermittency@3–8# and bubbling@9–12#. In on-off inter-
mittency, the invariant manifold is slightly unstable, and t
system can remain close to the invariant manifold for lo
periods of time, interrupted only by some occasional la
bursts away from the invariant manifold. In bubbling th
PRE 601063-651X/99/60~4!/3928~8!/$15.00
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invariant manifold is stable; however, there are unstable
variant sets embedded in the chaotic sets. As a result, s
perturbations can result in large intermittent bursts from
invariant manifold. Another phenomenon that may acco
pany the onset of on-off intermittency is symmetry breakin
in which the resulting bursting behavior does not possess
system symmetry, so that the system have two coexis
symmetrical attractors. However, clear symmetry break
may not be observed in experiments because the sys
close to the onset point is very sensitive to external per
bations, such that any small noise in practice will indu
transition of the trajectories between the two symmetri
attractors, and symmetry is restored.

In this paper, we first study how small noise affects t
transition in the system. Then we investigate the respons
the system to the input of a stream of a very weak bin
signal, periodic or aperiodic. This weak input can also indu
transition of the trajectory between the two symmetric
components. In the symmetry breaking region, the transi
is determined by the applied weak input, and the output
be regarded as an amplification of the weak signal. The r
dom or chaotic motion within the invariant subspace affe
the response time of the system as well as the bursting
quency. As a parameter of this motion changes, we can
serve the phenomenon of stochastic resonance. Since
source of noise from the random or chaotic motion is mu
plicative to the motion transverse to the invariant subspa
we call the resonant phenomenon multiplicati
noise~chaos!-induced stochastic resonance. We employ va
ous measures to characterize this phenomenon in the co
of different possible applications, including residence-tim
distribution, bit error probability and amplification factor.

II. THE SYSTEM

We consider the following general class of systems:

xn115 f ~xn!, ~1!

yn115F~xn ,p!G~yn!, ~2!
3928 © 1999 The American Physical Society
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PRE 60 3929AMPLIFICATION OF WEAK SIGNALS AND . . .
where f (x) is a noise generator or a chaotic process. T
function G(y) possesses the symmetryG(2y)52G(y),
thus the subspacey50 is invariant.F(xn ,p) is a certain
coupling function which can be regarded as a multiplicat
driving to the subsystemy, andp is a tunable parameter o
the driving. The stability of the invariant subspacey50 is
determined by the transverse Lyapunov exponent

l5 lim
N→`

1

N (
n51

N

lnuF~xn ,p!G8~0!u5^ lnuF~x,p!u&, ~3!

where G8(0)5dG(y)/dyuy50 is a constant. By absorbin
this constant into the functionF(xn ,p), one can always se
G8(0)51. Let Dx5^(lnuF(x,p)u2l)2& denotes the varianc
of lnuF(x,p)u. The stability of the invariant subspace is dete
mined by the parameterp, andl50 defines the critical value
pc which is the onset point of on-off intermittency.

A. Brownian motion model for on-off intermittency
and bubbling

To understand the unusual behavior of the system clos
the critical point of the stability, let us examine the line
dynamics ofy close to the invariant solutiony50, e.g.,uyu
<t, namely,

yn115F~xn ,p!yn . ~4!

A stateuyu<t is referred to as a laminar phase anduyu.t a
bursting phase. Heret is a small enough value so that th
linear approximation in Eq.~4! is valid. Introducing the vari-
ablez5 lnuyu, we get

zn115zn1l1ADxjn , ~5!

wherejn5(lnuF(xn ,p)u2l)/ADx is a random or chaotic vari
able with a mean 0 and a variance 1. Now if we rescale
system to a coarse-grained time scale by a factor ofN as

zn85
znN

N
, jn85

1

N (
i 50

N21

jnN1 i ~n50,1,2, . . . !, ~6!

we can see that

zn118 5zn81l1ADxjn8 , ~7!

which has the same dynamics as Eq.~5!. If the random or
chaotic signalxn has very short correlation time,jn8 will have
an asymptotic Gaussian distribution for largeN according to
the central limit theorem. In this context, the driving sign
xn can be viewed as a kind of multiplicative noise to t
motion of yn .

Based on the above consideration, to analyze the l
time behavior, map~5! can be replaced by the correspondi
stochastic differential equation

dz

dt
5l1ADxj, ~8!

wherej is a Gaussian white noise with a normal distributi
N(0,1). This equation describes one-dimensional Brown
motion with a constant driftl and a diffusion coefficient
e

e

-

to

e

l

g

n

Dx/2. Whenl is slightly positive, the motion drifts to the
positive direction, leading to repulsion from the invaria
subspace, but the diffusion may make the motion acc
deeply into the negative values ofz, so that the system ca
come in and remain close to the invariant subspace for s
long period of time, leading to on-off intermittency. Forl
slightly negative, the motion will eventually drift toz→
2`; however, if there is small noise added toyn , the motion
is prevented from drifting toz→2`. The effects of the ad-
ditive noise to Eq.~2! can be modeled by a reflecting boun
ary condition@4,13# of the Brownian motion in Eq.~8!. With
this reflecting boundary,z may access positive values due
the diffusion, leading to the behavior of attractor bubbling.
the presence of perturbations, on-off intermittency and b
bling are essentially the same phenomenon, and we s
refer to on-off intermittency from now on. When focusing o
the laminar phases, the nonlinearity of the functionG is not
important. It only serves to keep the statey bounded.

B. Symmetry breaking and conserving

The phenomenon of symmetry breaking, however, is
sociated with the nonlinearity of the functionG. In Fig. 1, we
show two possible situations of the system behavior.
Y1.0 and Y2.0 the values of y at which G(Y1)
5max@ uG(y)u# andG(Y2)50. Plot ~a! depicts the situation
whereymax5max@ uF(x,p)u#G(Y1),Y2, so that a trajectory
starting with 0,y0,Y2 (2Y2,y0,0) will remain in the
positive~negative! part forever in the noise-free case, and t
system is symmetry breaking since the trajectory does
possess the reflection symmetry of the functionG. While in
plot ~b!, ymax.Y2, and the system has only one asympto
attractor possessing the reflection symmetry, thus is sym
try conserving. A transition from one symmetrical comp
nent to the other happens wheneveruynu.Y2. The point
where ymax5Y2 is a symmetry increasing bifurcation poin
@14#.

To study the property of the symmetrical dynamical sy
tem subject to small noise or coherent signal, we emplo
function G in which Y2 is adjustable independently. Sinc
many properties observed in the following are quite comm
in this class of systems, we choose in this paper a piecew
linear function for simplicity of analysis.

FIG. 1. Illustration of two cases in the system:~a! ymax,Y2,
symmetry breaking and~b! ymax.Y2, symmetry conserving.
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G~y!55
1

c
~212c2y!, y,21,

y, uyu<1,

1

c
~11c2y!, y.1.

~9!

Also since the properties of on-off intermittency are univ
sal for many different driving signalsF(xn ,p), we simply let
F(xn ,p)5pxn , and use uniform random numbersxn
P(0,1) in simulations. With this implementation of the sy
tem, one hasl5 ln p21, Dx51, ymax5p, andY2511c so
that the symmetry increasing bifurcation occurs atcs5p
21. The onset point of on-off intermittency ispc5e
52.71828 . . . .

In the following several simulations, we takep52.8
above the critical point if not explicitly pointed out. Figure
shows typical behavior of the system with symmetry bre
ing (c52) and symmetry conserving (c51).

C. Sensitivity to small perturbations

Before we demonstrate the sensitivity of the system
weak coherent signal and the phenomenon of stochastic r
nance, we show how the system behaves in the presen
additive small noise. Small noise sets a reflecting bound
to the Brownian motion and can change the property of
laminar phases considerably@4,13#. Noise has another effec
on the system behavior: it can induce in the trajectory tr
sitions between the two symmetrical components of the s
tem, and the symmetry breaking will not manifest. As
example, Fig. 3 shows system behavior corresponding to
2, but with an additive small noise

yn115pxnG~yn!1en . ~10!

The standard deviation of the Gaussian white noiseen is d
51025. In the presence of even very small noise, symme
is restored for the originally symmetry-breaking syste
Since in practice noise is inevitable, clear symmetry break
as in Fig. 2~a! cannot be observed in real experiments.

The bursting patterns in Figs. 3~a! and 3~b! are qualita-
tively different. In Fig. 3~a!, the transition betweeny.0 and

FIG. 2. Typical time series of on-off intermittency.~a! c52,
symmetry breaking and~b! c51, symmetry conserving.
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y,0 occurs only wheny come to the noise level, while in
Fig. 3~b! transition can occur both in laminar phases a
bursting phases.

III. AMPLIFICATION OF WEAK SIGNAL
AND STOCHASTIC RESONANCE

In most previous studies on stochastic resonance,
noise induces hopping between the states separated by a
rier or a threshold with an average waiting time^Tr&. When
^Tr& is comparable with half the period of the applied we
signal, this noise-induced hopping becomes statistically s
chronized with the weak signal, and stochastic resonance
sues. In our system, the mechanism is different. We do
need additive noise to generate transitions. A weak signa
itself can generate such transitions.

Let us first consider the response of the system to a w
periodic binary signal

yn115pxnG~yn!1sn , ~11!

sn12T5sn5H A, 0,n<T,

2A, T,n<2T.
~12!

In the example in Fig. 4, we can see astonishing differenc
the system response to a weak periodic signal with amplit
A51025 and bit durationT51000. It is clear that for the
symmetry-breaking case, the transition is now almost tota
governed by the switching of the periodic binary signal.
weak sinusoidal input will produce similar output. While fo
the symmetry-conserving system, there are many additio
transitions induced by bursting phases in the duration o
signal bit, and the output do not have the clear periodicity
the signal.

To characterize the difference in the bursting pattern,
calculate the distribution of the residence time. The reside
time Tr is defined as follows: starting with a momentn0
when the system produces for the first time a large burs
state, sayyn0

,2yth , n1 is the subsequent time when th

system first produce a bursting stateyn1
.yth and n2 is the

time whenyn2
,2yth again, and so on; the quantityTr( i )

FIG. 3. Typical time series of on-off intermittency in the pre
ence of small noise withd51025. ~a! c52, symmetry breaking and
~b! c51, symmetry conserving.
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PRE 60 3931AMPLIFICATION OF WEAK SIGNALS AND . . .
5ni2ni21 represents the residence time the system stay
one of the symmetrical component between two subseq
transition events.yth is a value of the order ofymax. In all
our simulations in this paper, we setyth51.0.

Figure 5 shows the residence time distributionP(Tr) of
the bursting behavior in Fig. 3. For the symmetry-break
system,Tr distributes around the bit durationT of the input
signal. While for the symmetry conserving system, the d
tribution is almost the same as that of the input of noise~not
shown!.

We should point out that for symmetry-breaking system
single peak ofP(Tr) around T occurs only for T large
enough. ForT smaller than a certain value, the distributio
P(Tr) begins to show other peaks centered at odd multip
of the bit durationT, i.e., at (2k21)T (k51,2, . . . ), and the
smaller theT, the greater the number of peaks. The pe
height decreases exponentially withk. This property is quite
common in stochastic resonance systems@2#. Figure 6 shows
the results ofP(Tr) for T51000 andT5200. ForT51000,
a very small peak atk52 begins to show up, while forT
5200, seven peaks are clearly discernible. This behavio
associated with the relaxation timeT0 of the system, which
is the time for the system to relax to the statistically statio
ary state after the signal switches from one value to the ot
WhenT0.T, the transition of the system is not able to ke

FIG. 4. Typical time series of on-off intermittency in the pre
ence of weak periodic signal. with amplitudeA51025 and bit du-
ration T51000. ~a! c52, symmetry breaking and~b! c51, sym-
metry conserving.

FIG. 5. Residence time distributionP(Tr) in the presence of
weak periodic signal withA51025 and T51000. Plot 1:c52,
symmetry breaking; plot 2:c51, symmetry conserving.
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up with the switching of the signal. The appearance of
peaks can be simply explained: the system may perform
transition after the signal switches from a bit to the oth
thus T is a preferred residence time. If the system fails
perform a transition before the signal switches back, it ha
wait for a full period before it can produce a transition, a
the second peak is therefore located at 3T, and so on.

The behavior of the system with a weak signal is det
mined by the competition between the strength of the c
stant drift l and the diffusionDx/2. If p is far away below
the critical point, the system will quickly relax to a signa
induced metastability state, and can rarely produce la
bursting states, and the bursting pattern may not posses
periodicity of the weak signal. Withp approachingpc , the
system can produce large bursting states more freque
and the periodicity of the signal can be manifested. Whep
is far away above the critical point, the system can seld
have access to the level of weak inputuyu;A, and the
switching of the signal can no longer determine the transit
of y; the bursting pattern loses the periodicity of the sign
again. An optimal response will be obtained around the cr
cal point where the drift is dominated by the diffusion, a
the system can have access to the level of the weak inpu
that the transition is sensitive to the switching of the we
signal, and at the same time can produce large bursting s
quite quickly.

In order to quantify the the response of the system a
function ofp, we introduce the area under the peak cente
at the bit durationT in the residence time distribution as
measure of the strength of the periodicity

S5 (
T2T/4

T1T/4

P~Tr !. ~13!

S as a function ofp is shown in Fig. 7. It increases withp,
reaches a maximum and decreases again, displaying the
cal feature of stochastic resonance. This feature is quite
bust to noise additive to the weak periodic signal, as see
Fig. 7 whereS as a function ofp is also shown for different
level of additive noise. Whenp increases, the system ma

FIG. 6. Residence time distributionP(Tr) in the presence of
weak periodic signal withA51025 but different bit durationT.
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enter into the symmetry-conserving region, and the transi
during the bursting phases will degrade the periodicity of
output. Now ifc has such a value that the system enters i
the symmetry-conserving region before reaching the re
nant point, the maximal value ofS will be slightly after the
symmetry increasing pointps511c, because the transitio
induced by the bursting phases is rare just beyond this po
and it become more significant forp going deeper into the
symmetry converging region. An example of this case
shown in Fig. 7 forc51.5, where the maximalS is found
aroundp52.55. This optimal response is not a resonant
havior in the sense discussed above. However, in a w
sense, it can also be regarded as a resonant phenom
because it results from the competition between the tra
tion induced by the weak signal and that induced by
bursting phases.

In the above, we characterize the stochastic resonanc
the residence time distribution for a periodic binary sign
One should have noticed that the periodicity of the signa
not important for observing the resonance phenomen
However, if we consider aperiodic signals, for example
random series of binary bits, we should employ some ot
quantities to quantify the phenomenon.

First, let us consider a possible application of the syst
in the detection of a weak signal with bit durationT. The
detection is performed as follows: we look at the large bu
ing stateuyu.yth ; if the sum of these states in a bit duratio
is positive~negative!, then this bit is detected as11(21); if
this number is zero, we cannot make a decision. With
scheme, one may detect a very weak signal with a lo
resolution detector. We calculate the probability of bit er
Pe as a function ofp. The result is shown in Fig. 8. A
random stream of signal with 106 bits is used in the simula
tion. When p is quite below the critical point, the system
produces large bursts quite sporadically, and only a v
small portion of the bits is detected. The bit error probabil
is close to 1.0. On the opposite hand, the system produ
large bursting states quickly, but is not sensitive to the s
nal, andPe tends to 0.5. An optimal detection with smalle
bit error probability is obtained around the critical point. W
also calculatePe in the presence of additive noise. Again w
see that the system is very robust to additive noise. In
sense, the system may find application in the detection
weak signal buried in a relatively high level of noise.

Next let us consider the application of the system as
amplifier of the weak signal. A natural measure of the out

FIG. 7. The strengthS of the first peak as a function ofp for
different level of additive noise. The input signal isA51027,
T51000.
n
e
o
o-

t,

s

-
er
non
i-
e

by
l.
s
n.
a
er

m

t-

is
-
r

ry

es
-

is
a

n
t

is the ensemble average^yn&. An amplification factorI can
be defined as

I 25 lim
N→`

1

N (
n51

N
^yn&

2

A2
. ~14!

For a periodic signal,

I 25
1

T (
n51

T
^yn&

2

A2
. ~15!

For this system, we can give an analytical estimation
the amplification factor under the adiabatic conditionT
@T0. To perform this analysis, let us recall the Brownia
motion model in Eq.~8!. The probability distribution of the
variablez satisfies the Fokker-Planck equation

]W

]t
52l

]W

]z
1

Dx

2

]2W

]z2
. ~16!

The small signal and confinement of the nonlinearity can
modeled by two reflecting boundaries of the Brownian m
tion. If T@T0, the probability distribution ofz will establish
a stationary state during a bit duration, namely,W(z)
5C exp(az), wherea52l/Dx . In the original variabley, it
becomesW(y)5Cuyua21. If the system is symmetry break
ing, after reaching the stationary state,y is always positive
~negative! for signal bit 11(21). With the normalization
condition

E
A

yeff
Cya21dy51, ~17!

where yeff is a parameter used to represent the reflect
boundary due to the nonlinearity of the system, we can e
mate the amplitude of the ensemble average^yn& of the sys-
tem with a weak input~bit 11) as

^y&'

E
A

yeff
yW~y!dy

E
A

yeff
W~y!dy

5
a

11a

yeffb2A

b21
, ~18!

FIG. 8. Bit error probabilityPe as a function ofp. The param-
eters arec53.0, A51027, T51000.
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whereb5(yeff /A)a. From Eq.~18!, ^y& is a monotonic in-
creasing function ofp and the stochastic resonance cannot
observed should the adiabatic condition hold true for a
value ofp.

Close to the critical pointpc , uau!1, the diffusion is
dominant and the system can produce large bursting s
quickly. As an estimation, we can just takeyeff5ymax. If
uau ln(ymax/A)!1, one hasb'11a ln(ymax/A). For weak
input A!ymax, we arrive at

^y&'
ymax

ln~ymax/A!
, ~19!

which decreases to zero with the decrease of the signal
plitude A only logarithmically. The amplification factor in
this case is just

I 5
^y&
A

5
ymax

A ln~ymax/A!
, ~20!

which shows that the system is very sensitive to weak sig
close to the critical point. This feature of sensitivity is qu
different from that of the sensitivity near the onset of
period-doubling bifurcation in many dynamical systems@15#.
There the system is only sensitive to perturbations near
the fundamental frequency of the system for bifurcation
rameter very close to the onset point.

This model analysis is demonstrated by simulation. Fig
9 showsI as a function ofm for small signal amplitudeA
5102m. The parameterp52.72 in this simulation is very
close to the critical point andT@T0 is satisfied. It is seen
that the analytical estimation of Eq.~20! with ymax5p fits
the simulation result very well forA covering several orders

If the adiabatic condition is not satisfied, the system m
not establish a stationary state during a bit duration, and

FIG. 9. Amplification of the weak signal withA5102m under
the adiabatic conditionT@T0. The amplification factor~dots! is
obtained by the ensemble average estimated with 104 samples of the
time series of the system atp52.72. The solid line is the analytica
result of Eq.~20! with ymax5p.
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transient behavior during the relaxation process becomes
nificant. The time-dependent probability distribution is n
easy to obtain, and we rely on simulations to estimateI.
Although the measureI is applicable to aperiodic signals, w
employ periodic signal in our simulation, because it can
duce considerably the computation effort.

Now let us investigate howI changes withp. As stated in
the above, ifp is far away below the critical point, the con
stant driftl5 ln p2 ln pc,0 makes the system stay most
time close to the low boundaryuyu;A. The amplitude of the
ensemble average is quite small. It increases quickly whep
approaches the critical point where the diffusion beco
dominant. However,T0 is also increasing, and̂yn& may not
reach the maximal value in Eq.~18! when the system is no
quick enough to follow the modulation of the signal, andI
may begin to decrease. There will be an optimal amplifi
tion of the signal. Since the relaxation time is longer f
smaller A, the stochastic resonance peak shifts to sma
value ofp for smallerA. The amplification will be degraded
further if the system enters into the symmetry conserv
region.

The typical behavior of the system with respect to t
parameterp is illustrated in Fig. 10. In this simulation, we
takec52.2 so that the system will move into the symmetr
conserving region atps511c53.2 which is high above the
critical point. Figure 10~a! shows time series of̂yn& for
several typical values ofp. The dependence ofI on the pa-
rameterp is shown in Fig. 10~b! for different values ofc and
signal amplitudeA. Complying with the above analysis,I
increases withp until T0 becomes long enough or until th
system moves into the symmetry-conserving region. We w
observe the optimal system response to the small signa
the regionp,ps if T0 becomes significantly longer thanT
before the system enters into the symmetry-conserving
gion, as for the caseA51027 in Fig. 10~b! where the maxi-
mal I is found aroundp52.95 beforeps53.2. The maxi-
mum will be slightly after the pointps if the system enters
into the symmetry-conserving region before reaching
resonant point, as for the case ofA51025 andc51.8 in Fig.
10~b!.

Again we examined the robustness of the property of s
chastic resonance to additive noise. In Fig. 11,I as a function
of p for different level of additive noise is shown. Amplifi
cation of the small signal is obtained even if the noise le
is much higher than the signal amplitude.

Since amplification of weak signal and stochastic re
nance in the system can be understood by the Brownian
tion model derived from the linear dynamics close to t
invariant subspace, this phenomenon is universal in a gen
class of symmetrical systems with random or chaotic mot
within the subspace.
FIG. 10. Amplification property as a function
of the parameterp. ~a! Time series of the en-
semble averagêyn& for several typical values of
p. ~1! p52.4, ~2! p53.1, and~3! p53.4. Other
parameters areA51025, T51000, andc52.2.
~b! I as a function ofp for different values ofA
andc. T51000.
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IV. DISCUSSION

We demonstrate a new mechanism of stochastic re
nance in a general class of symmetrical dynamical syst
with on-off intermittency and symmetry breaking. The sy
tem has an invariant subspace whose stability is determ
by the random or chaotic motion within the subspace. Cl
to the critical point of the stability, the system is very sen
tive to small perturbations, since the statey has a power-law
distribution in a wide interval 102m,uyu,yeff . The behav-
ior of the system response to a weak binary signal can
understood by the competition between the drift and the
fusion in the Brownian motion model derived from the line
dynamics closed to the invariant subspace. When the d
sion becomes dominant for the parameterp close to the criti-
cal point of stability, the system attains the ability of amp
fication of a very weak signal, not via additive noise, but v
multiplicative noise. When the parameterp determining the
stability varies across the critical point from below to abov
the sensitivity to the weak signal increases and then
creases after reaching a maximum, displaying the phen
enon of stochastic resonance. The resonance occurs whe
system can have access to the level of the weak signa
become sensitive to the switching of the signal, and prod
large output quickly at the same time.

There are several differences of this mechanism of
chastic resonance to that in a noisy bistable or threshold
tem.

~1! The source of noise is not additive but multiplicativ
which is inherent from the random or chaotic motion with
the invariant subspace.

~2! In a noisy bistable or threshold system, the weak s
nal by itself cannot induce hopping over the the energy b
rier or the threshold. The additive noise induces such tun

FIG. 11. Robustness of the stochastic resonance to add
noise.A51027, T51000.
v.
o-
s

-
ed
e
-

e
f-

u-

,
e-

-
the
to
e

-
s-

-
r-
l-

ing process which introduces a noise-controlled time sc
into the system. When this time scale matches that of
weak signal, the statistical synchronization of the tunnel
to the signal leads to resonant response to the signal in
system. In the present mechanism of stochastic resona
the multiplicative noise does not induce transition betwe
the two symmetrical component, and there does not exi
noise-induced time scale of the transition. The transition
induced by the weak signal itself in the symmetry break
case. A change of the level of the multiplicative noi
changes the response time of the system. The resonanc
curs not because this response time matches the period o
signal, but because the system responds quickly enoug
follow the switching of the signal and produces large outp
quickly after a switching . The resonant phenomenon is
restricted to periodic signals. We have employed differ
quantities rather than the conventional signal-to-noise r
suitable for a sinusoidal input to quantify the phenomeno

~3! In our systems with symmetry breaking, althoug
there exist two distinguished symmetrical parts in the s
tem, there is not any clear form of threshold or barrier in t
system.

The phenomenon demonstrated in this paper is unive
in a class of systems. Many systems, for example, symm
cally coupled identical chaotic systems@12,16–18# or inter-
acting stranger attractors@19#, can be reduced to a form sim
lar to the systems discussed in this paper, and we may ex
to observe similar phenomenon around the critical point
synchronization. However, in such systems, a change of
parameter of the coupling strength may change the cha
dynamics within the synchronization manifold, and this c
bring about additional complication into the system respo
to a weak signal. This will be a topic for future study.

The behavior of on-off intermittency or bubbling may b
harmful in some applications, such as secure communica
using synchronization of chaos@20#, because in practice
high-quality synchronization can be destroyed by large in
mittent bursts from the synchronization manifold due to u
avoidable perturbations@9–12#. We demonstrate that suc
behavior, however, can be employed to amplify extrem
weak signal, and the amplification is shown to be very rob
to additive noise. This may lead to useful applications of
behavior which is quite universal in many systems.
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