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Nonlinear dynamical systems possessing reflection symmetry have an invariant subspace in the phase space.
The dynamics within the invariant subspace can be random or chaotic. As a system parameter changes, the
motion transverse to the invariant subspace can lose stability, leading to on-off intermittency. Under certain
conditions, the bursting behavior is symmetry breaking. We demonstrate the possibility of observing multipli-
cative noiséchaog-induced amplification of weak signal and stochastic resonance via on-off intermittency
with symmetry breaking in a general class of symmetrical systems. Differences of this mechanism of stochastic
resonance to that in noisy bistable or threshold systems are disc{84663-651X99)09710-X|

PACS numbd(s): 05.45—a, 05.40-a

[. INTRODUCTION invariant manifold is stable; however, there are unstable in-
variant sets embedded in the chaotic sets. As a result, small
The phenomenon of stochastic resonance has been a suyigrturbations can result in large intermittent bursts from the
ject of great interest since it was first proposed in the study ofvariant manifold. Another phenomenon that may accom-
the geophysical dynami¢&]. The idea is that a signal can be pany the onset of on-off intermittency is symmetry breaking,
amp“f'ed by the dynamics Of a System in the presence Om Wh|Ch the resu|t|ng burs“ng behaVIOI’ doeS not pOSSGS_S the
noise. The most frequently studied system is the motion of gYStem symmetry, so that the system have two coexisting
particle in a symmetric double-well potential that is sub-Symmetrical attractors. _However, clear symmetry breaking
jected to a periodic modulation and a Gaussian white noisd@y Not be observed in experiments because the system
The amplitude of the modulation is so small that, by itself, itC|0$e to the onset point is very §ens!t|ve to gxterr!allpertur-
cannot induce any transition between the two potential Wellsbat'ons’ such that any small noise in practice will induce

On the other hand, the added white noise can induce sud ansition of the trajectories between the two symmetrical

transitions and controls the time scale of the tunnelin bef"1 Iraciors, and symmeny is restored.
9 In this paper, we first study how small noise affects the

t.Wee“ the two potential wells. A resonance occurs vyhen th.'?ransition in the system. Then we investigate the response of
time scale matches the time period of the modulation. Thi h

. , ) ¥he system to the input of a stream of a very weak binary
phenomenon has been explored in various fields and manygna] periodic or aperiodic. This weak input can also induce
new applications have been discoved, see Raffor a re-  ansition of the trajectory between the two symmetrical
view of the phenomenon and further references. In generahomponents. In the symmetry breaking region, the transition

three basic ingredients are required for a system to display determined by the applied weak input, and the output can

stochastic resonance, including a form of threshold or energie regarded as an amplification of the weak signal. The ran-

barrier, a weak coherent input, and a noise source which igom or chaotic motion within the invariant subspace affects

inherent in the system or added to the weak input. Thigshe response time of the system as well as the bursting fre-

source of “noise” can be some form of chaotic dynamics inquency. As a parameter of this motion changes, we can ob-

deterministic systems, because deterministic chaos resemblssrve the phenomenon of stochastic resonance. Since the

the features of noise on a coarse-grained time scale. Witkource of noise from the random or chaotic motion is multi-

these features, the system can display increased sensitivity pdicative to the motion transverse to the invariant subspace,

the weak input at an optimal noise level. we call the resonant phenomenon multiplicative
In this paper, we present a mechanism for realizing stonoiséchaos-induced stochastic resonance. We employ vari-

chastic resonance in a general class of dynamical systewmus measures to characterize this phenomenon in the context

with reflection symmetry. Due to this symmetry, the systemof different possible applications, including residence-time

possesses an invariant subspace in its phase space. We digtribution, bit error probability and amplification factor.

interested in the case where the motion within this subspace

is random or chaotic. As a system parameter changes, the

stability of the subspace can be altered and the system can Il. THE SYSTEM

display unusual dynamical behaviors, among which are on- e consider the following general class of systems:

off intermittency[3—8] and bubbling9-12]. In on-off inter-

mittency, the invariant manifold is slightly unstable, and the

system can remain close to the invariant manifold for long Xn+1=10X), @
periods of time, interrupted only by some occasional large
bursts away from the invariant manifold. In bubbling the VYnr1=F(Xn,P)G(Yn), 2
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where f(x) is a noise generator or a chaotic process. The '

function G(y) possesses the symmet@(—y)=—G(y),
thus the subspacg=0 is invariant.F(x,,p) is a certain

coupling function which can be regarded as a multiplicative

driving to the subsystery, andp is a tunable parameter of
the driving. The stability of the invariant subspage 0 is
determined by the transverse Lyapunov exponent

1
A= lim—

N
N 21 In|F (x,,p)G' (0)[=(In[F(x,p)]), (3)

N—o

where G’(0)=dG(y)/dy|y=0 is a constant. By absorbing
this constant into the functioR(x, ,p), one can always set
G’(0)=1. Let D,={(In|F(x,p)|—\)?) denotes the variance
of In|F(x,p)|. The stability of the invariant subspace is deter-
mined by the paramet@; and\ =0 defines the critical value
p. Which is the onset point of on-off intermittency.

A. Brownian motion model for on-off intermittency
and bubbling

To understand the unusual behavior of the system close
the critical point of the stability, let us examine the linear
dynamics ofy close to the invariant solution=0, e.g.,|y|
<7, namely,

(4)

A state|y| < is referred to as a laminar phase dgt> 7 a
bursting phase. Here is a small enough value so that the
linear approximation in Eg4) is valid. Introducing the vari-
ablez= Inly|, we get

Zn+1:Zn+7\+\/D_x§ni 5

where£,= (In|F(x,,p)|—\)/\Dy is a random or chaotic vari-

Yn+1=F(Xn,P)Yn-
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FIG. 1. lllustration of two cases in the syste@® Yya<Y2,
symmetry breaking anth) y ., Y2, Symmetry conserving.

D,/2. When\ is slightly positive, the motion drifts to the
positive direction, leading to repulsion from the invariant
subspace, but the diffusion may make the motion access
deeply into the negative values mf so that the system can
gome in and remain close to the invariant subspace for some
ong period of time, leading to on-off intermittency. Far
slightly negative, the motion will eventually drift ta—

—oo; however, if there is small noise addedytp, the motion

is prevented from drifting ta— —. The effects of the ad-
ditive noise to Eq(2) can be modeled by a reflecting bound-
ary condition[4,13] of the Brownian motion in Eq(8). With

this reflecting boundaryz may access positive values due to
the diffusion, leading to the behavior of attractor bubbling. In
the presence of perturbations, on-off intermittency and bub-
bling are essentially the same phenomenon, and we shall
refer to on-off intermittency from now on. When focusing on
the laminar phases, the nonlinearity of the funct®is not
important. It only serves to keep the stgtbounded.

able with a mean 0 and a variance 1. Now if we rescale the

system to a coarse-grained time scale by a factdy ab

1 N—-1
b=y 2 b (1=012..), (6
i=0

we can see that

z, 1=+ + D&, (7

which has the same dynamics as Eg). If the random or
chaotic signak,, has very short correlation timé, will have

an asymptotic Gaussian distribution for lafyeaccording to
the central limit theorem. In this context, the driving signal
Xn can be viewed as a kind of multiplicative noise to the
motion ofy,,.

B. Symmetry breaking and conserving

The phenomenon of symmetry breaking, however, is as-
sociated with the nonlinearity of the functi@ In Fig. 1, we
show two possible situations of the system behavior. Let
Y;>0 and Y,>0 the values ofy at which G(Y;)
=max{|G(y)|] andG(Y,)=0. Plot(a) depicts the situation
wherey ma,=max |F(x,p)|1G(Y1)<Y,, so that a trajectory
starting with 0<yo<Y, (—Y,<yo<0) will remain in the
positive(negative part forever in the noise-free case, and the
system is symmetry breaking since the trajectory does not
possess the reflection symmetry of the funct@nWhile in
plot (b), Ymax> Y2, and the system has only one asymptotic
attractor possessing the reflection symmetry, thus is symme-

Based on the above consideration, to analyze the lon§fy conserving. A transition from one symmetrical compo-

time behavior, maj§s) can be replaced by the corresponding
stochastic differential equation

dz
g =MD ®)

nent to the other happens whenevgg|>Y,. The point
wherey,.=Y> IS @ symmetry increasing bifurcation point
[14].

To study the property of the symmetrical dynamical sys-
tem subject to small noise or coherent signal, we employ a
function G in which Y, is adjustable independently. Since

where¢ is a Gaussian white noise with a normal distribution many properties observed in the following are quite common
N(0,1). This equation describes one-dimensional Browniarin this class of systems, we choose in this paper a piecewise
motion with a constant drifh and a diffusion coefficient linear function for simplicity of analysis.
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FIG. 2. Typical time series of on-off intermittencya) c=2, FIG. 3. Typic_al time series of on-off intermittency in t_he pres-
symmetry breaking antb) c=1, symmetry conserving. ence of small noise with=10"5. (a) c=2, symmetry breaking and
(b) c=1, symmetry conserving.
(1
E(_ l1-c—-y), y<—1 y<0 occurs only whery come to the noise level, while in
<1 Fig. 3(b) transition can occur both in laminar phases and
G(y)=¢ ¥’ yI=1, (9)  bursting phases.

1
—(1+c-y), y>L
C I1l. AMPLIFICATION OF WEAK SIGNAL
\ AND STOCHASTIC RESONANCE

Also since the properties of on-off intermittency are univer- |n most previous studies on stochastic resonance, the
sal for many different driving signals(x, ,p), we simply let  nojse induces hopping between the states separated by a bar-
F(Xn,p)=pX,, and use uniform random numbers, rier or a threshold with an average waiting tifig ). When
€(0,1) in simulations. With this implementation of the sys- (T ) is comparable with half the period of the applied weak
tem, one hag = Inp—1, D,=1, Yna=P, andY,=1+C SO  sjgnal, this noise-induced hopping becomes statistically syn-
that the symmetry increasing bifurcation occurscatp  chronized with the weak signal, and stochastic resonance en-
—1. The onset point of on-off intermittency ip.=e  sues. In our system, the mechanism is different. We do not
=2.7188. ... need additive noise to generate transitions. A weak signal by
In the following several simulations, we take=2.8 jtself can generate such transitions.
above the critical point if not explicitly pointed out. Figure 2 | et us first consider the response of the system to a weak
shows typical behavior of the system with symmetry breakperiodic binary signal
ing (c=2) and symmetry conserving€1).

Ynt+1=PXaG(Yn) +Sn, (11
C. Sensitivity to small perturbations
Before we demonstrate the sensitivity of the system to S g — A, 0<n<T, (12)
weak coherent signal and the phenomenon of stochastic reso- Nt A, T<n<2T.

nance, we show how the system behaves in the presence of

additive small noise. Small noise sets a reflecting boundaryn the example in Fig. 4, we can see astonishing difference of
to the Brownian motion and can change the property of thehe system response to a weak periodic signal with amplitude
laminar phases consideralji4,13]. Noise has another effect A=10"° and bit durationT=1000. It is clear that for the

on the system behavior: it can induce in the trajectory transymmetry-breaking case, the transition is now almost totally
sitions between the two symmetrical components of the sysgoverned by the switching of the periodic binary signal. A
tem, and the symmetry breaking will not manifest. As anweak sinusoidal input will produce similar output. While for
example, Fig. 3 shows system behavior corresponding to Fighe symmetry-conserving system, there are many additional

2, but with an additive small noise transitions induced by bursting phases in the duration of a
signal bit, and the output do not have the clear periodicity of
Ynt1=PXG(Yn) +€,. (10) the signal.

To characterize the difference in the bursting pattern, we

The standard deviation of the Gaussian white neisés § A . : .
—10°5. In the presence of even very small noise, Symmetrycalculate the distribution of the residence time. The residence

is restored for the originally symmetry-breaking system.tlme T, is defined as follows: starting with a momeng

Since in practice noise is inevitable, clear symmetry breakin hen the system produc_es for the first time a large bursting

as in Fig. 2a) cannot be observed in real experiments. tate, sa'yyno<—yth, Ny 1S the subsequent time When the
The bursting patterns in Figs(8 and 3b) are qualita- System first produce a bursting statg >y, andn; is the

tively different. In Fig. 3a), the transition betweep>0 and  time whenyn2<—yth again, and so on; the quantity (i)
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FIG. 4. Typical time series of on-off intermittency in the pres- 10 0 1000 2000 3000 4000
ence of weak periodic signal. with amplitude=10"° and bit du- T
ration T=1000. (a) c=2, symmetry breaking anth) c=1, sym-
metry conserving. FIG. 6. Residence time distributioR(T,) in the presence of

weak periodic signal witth=10"° but different bit duratior.

=n,—n;_, represents the residence time the system stays in o )
one of the symmetrical component between two subsequed With the switching of the signal. The appearance of the

transition eventsyy, is a value of the order of 4. In all ~ Peaks can be simply explained: the system may perform a

our simulations in this paper, we sgf,=1.0. transition after the signal switches from a bit to the other,
Figure 5 shows the residence time distributi®(T,) of thus T is a preferred residence time. If the system fails to

the bursting behavior in Fig. 3. For the symmetry-rbreakingperform a transition before the signal switches back, it has to

system,T, distributes around the bit duratiohof the input wait for a full peripd before it can produce a transition, and
signal. While for the symmetry conserving system, the distn€ Second peak is therefore located & and so on.
tribution is almost the same as that of the input of ndiset _The behavior of the system with a weak signal is deter-
shown. mined py the competl_non.between the_ strength of the con-
We should point out that for symmetry-breaking system, s5tant driftA and the diffusionD,/2. If p is far away below
single peak ofP(T,) around T occurs only forT large f[he critical point, t_hg system will quickly relax to a signal-
enough. FoiT smaller than a certain value, the distribution induced metastability state, and can rarely produce large
P(T,) begins to show other peaks centered at odd multipleSUrsting states, and the bursting pattern may not possess the
of the bit duratiorT, i.e., at (k—1)T (k=1,2,...), and the Periodicity of the weak signal. Witp approachingp, the
smaller theT, the greater the number of peaks. The peakSyStém can produce large bursting states more frequently,
height decreases exponentially wkhThis property is quite 2"d the periodicity of the signal can be manifested. Wpen
common in stochastic resonance systégisFigure 6 shows 1S far away above the critical point, the system can seldom
the results o (T,) for T=1000 andT =200. ForT=1000, have access to the level of weak ingy{~A, and the
a very small peak ak=2 begins to show up, while fof switching of th_e signal can no longer det_err_m_ne the transition
=200, seven peaks are clearly discernible. This behavior i€ ¥; the bursting pattern loses the periodicity of the signal
associated with the relaxation tinig of the system, which agam..An optimal response will pe obtained arqund_the criti-
is the time for the system to relax to the statistically station-Ca! POINt where the drift is dominated by the diffusion, and

ary state after the signal switches from one value to the othef'€ System can have access to the level of the weak input so

WhenT,>T, the transition of the system is not able to keepthat the transition is sengﬂve to the switching of thg weak
signal, and at the same time can produce large bursting states

, quite quickly.
10 In order to quantify the the response of the system as a
10 ] function of p, we introduce the area under the peak centered
10° | at the bit durationT in the residence time distribution as a
—_ measure of the strength of the periodicity
£ 10° 1
o s T+T/4
10 .
S= > P(T). (13
10° | T=T/4
107100 0 e 0 To* S as a function ofp is shown in Fig. 7. It increases with
T reaches a maximum and decreases again, displaying the typi-

cal feature of stochastic resonance. This feature is quite ro-
FIG. 5. Residence time distributioR(T,) in the presence of bust to noise additive to the weak periodic signal, as seen in

weak periodic signal withrA=10"° and T=1000. Plot 1:c=2, Fig. 7 whereS as a function op is also shown for different

symmetry breaking; plot 22=1, symmetry conserving. level of additive noise. Whep increases, the system may
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FIG. 7. The strengtls of the first peak as a function qf for FIG. 8. Bit error probabilityP, as a function op. The param-

different level of additive noise. The input signal =107, eters ar&c=3.0, A=10"7, T=1000.
T=1000.

enter into the symmetry-conserving region, and the transitiof” the ensemble averaggy). An amplification factorl can

during the bursting phases will degrade the periodicity of the’® defined as

output. Now ifc has such a value that the system enters into N

the symmetry-conserving region before reaching the reso- , 1 (Yn)?

nant point, the maximal value @ will be slightly after the I _,\I"mxﬁ &oa? (14)
symmetry increasing poirts=1+c, because the transition N

induced by the bursting phases is rare just beyond this poin[._, iodic sianal

and it become more significant f@r going deeper into the or a periodic sighal,

symmetry converging region. An example of this case is - )

shown in Fig. 7 forc=1.5, where the maxim&b is found |2:E D (Yn) (15)
aroundp=2.55. This optimal response is not a resonant be- Tz A2

havior in the sense discussed above. However, in a wider

sense, it can also be regarded as a resonant phenomenongq, this system, we can give an analytical estimation of

because it results from the competition between the transi;,o amplification factor under the adiabatic conditian

tion induced by the weak signal and that induced by the, 14 herform this analysis, let us recall the Brownian

bursting phases. . . motion model in Eq(8). The probability distribution of the
In the above, we characterize the stochastic resonance b, .i-vie satisfies the Fokker-Planck equation

the residence time distribution for a periodic binary signal.
One should have noticed that the periodicity of the signal is

2
not important for observing the resonance phenomenon. ﬂv:_ ﬂv_’_&& w (16)
However, if we consider aperiodic signals, for example a at az 2 72’
random series of binary bits, we should employ some other
quantities to quantify the phenomenon. The small signal and confinement of the nonlinearity can be

~ First, let us consider a possible application of the systenyyodeled by two reflecting boundaries of the Brownian mo-
in the detection of a weak signal with bit duratih The  {jon If T>T,, the probability distribution of will establish
detection is performed as follows: we look at the large bursty stationary state during a bit duration, nameW(z)

ing stately| >y, ; if the sum of these states in a bit duration _ exp(az), wherea=2\/D, . In the original variabley, it

is positive(negative, then this bit is detected as1(—1);if becomesN(y)=C|y|* L. If the system is symmetry break-
this number is zero, we cannot make a decision. With th|s'mg, after reaching the stationary stageis always positive

scheme, one may detect a very weak signal with a low{negative for signal bit +1(—1). With the normalization
resolution detector. We calculate the probability of bit error.qndition

P. as a function ofp. The result is shown in Fig. 8. A

random stream of signal with $®its is used in the simula- Vert

tion. Whenp is quite below the critical point, the system f Cy* ldy=1, a7
produces large bursts quite sporadically, and only a very A

small portion of the bits is detected. The bit error probability

is close to 1.0. On the opposite hand, the system produceééhere v is a parameter used to represent the reflecting
large bursting states quickly, but is not sensitive to the sigboundary due to the nonlinearity of the system, we can esti-
nal, andP, tends to 0.5. An optimal detection with smallest mate the amplitude of the ensemble averagg of the sys-

bit error probability is obtained around the critical point. We tem with a weak inputbit +1) as

also calculatéP, in the presence of additive noise. Again we

see that the system is very robust to additive noise. In this Yeft

sense, the system may find application in the detection of a fA yW(y)dy @ YerB—A

weak signal buried in a relatively high level of noise. (y)=~ = ef , (18
Next let us consider the application of the system as an ye”W(y)dy Ita p-1

amplifier of the weak signal. A natural measure of the output
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10" transient behavior during the relaxation process becomes sig-
nificant. The time-dependent probability distribution is not
easy to obtain, and we rely on simulations to estimate

10

10 - 1 Although the measurkis applicable to aperiodic signals, we
- employ periodic signal in our simulation, because it can re-
10° - J duce considerably the computation effort.
/ Now let us investigate howchanges witlp. As stated in

the above, ifp is far away below the critical point, the con-
stant driftA = In p— In p.<0 makes the system stay most of
time close to the low boundaty|~A. The amplitude of the
o _ _ . ensemble average is quite small. It increases quickly when
FIG. 9. Amplification of the weak signal with=10"" under  gpproaches the critical point where the diffusion become
thbet ?d'zbst'tchcond't'orz? To. The a”t‘.p"f'faé'onﬂr;‘;cé]o'(ldms)f ;f] dominant. HoweverT is also increasing, angy,,) may not
obtained by the ensemble average estimated Witlsaples otthe o -h the maximal value in E¢L8) when the system is not
time series of the system pt=2.72. The solid line is the analytical . . .
: _ quick enough to follow the modulation of the signal, and
result of Eq.(20) with ypa.,=P- . . . .
may begin to decrease. There will be an optimal amplifica-

where 8= (yi/A)®. From Eq.(18), (y) is a monotonic in- tion of the signal. Since the relaxation time is longer for
creasing function op and the stochastic resonance cannot bémaller A, the stochastic resonance peak shifts to smaller
observed should the adiabatic condition hold true for any/alue ofp for smallerA. The amplification will be degraded
value ofp. further if the system enters into the symmetry conserving
Close to the critical poinp, |e|<1, the diffusion is region. . _
dominant and the system can produce large bursting states The typical behavior of the system with respect to the
quickly. As an estimation, we can just takgs=Ym.. |f  Parametep is illustrated in Fig. 10. In this simulation, we
|a|IN(Ymax/A) <1, one hasB~1+ aIn(yma/A). For weak takec=2.2 so that the system will move into the symmetry-

o I I
0 5 10 15
m

10

input A<y, ., We arrive at conserving region gbs=1+c=3.2 which is high above the
critical point. Figure 108 shows time series ofy,) for
Y max several typical values gf. The dependence dfon the pa-
(V)= IN(Ymax/ A) (19 rameterp is shown in Fig. 1(b) for different values ot and

signal amplitudeA. Complying with the above analysis,
which decreases to zero with the decrease of the signal anmcreases withp until T becomes long enough or until the
plitude A only logarithmically. The amplification factor in system moves into the symmetry-conserving region. We will

this case is just observe the optimal system response to the small signal in
the regionp<ps if Tg becomes significantly longer than
| — @ _ Ymax (20) before the system enters into the symmetry-conserving re-

gion, as for the casa=10"" in Fig. 10b) where the maxi-
mal | is found aroundp=2.95 beforeps=3.2. The maxi-
which shows that the system is very sensitive to weak signahum will be slightly after the poinps if the system enters
close to the critical point. This feature of sensitivity is quite into the symmetry-conserving region before reaching the
different from that of the sensitivity near the onset of aresonant point, as for the caseff 10" ° andc=1.8 in Fig.
period-doubling bifurcation in many dynamical systdrs]. 10(b).
There the system is only sensitive to perturbations near half Again we examined the robustness of the property of sto-
the fundamental frequency of the system for bifurcation pachastic resonance to additive noise. In Fig.l14s a function
rameter very close to the onset point. of p for different level of additive noise is shown. Amplifi-
This model analysis is demonstrated by simulation. Figureation of the small signal is obtained even if the noise level
9 showsl as a function ofm for small signal amplitudeA is much higher than the signal amplitude.
=10"". The parametep=2.72 in this simulation is very Since amplification of weak signal and stochastic reso-
close to the critical point and>T, is satisfied. It is seen nance in the system can be understood by the Brownian mo-
that the analytical estimation of EQR0O) with y.,=p fits  tion model derived from the linear dynamics close to the
the simulation result very well foA covering several orders. invariant subspace, this phenomenon is universal in a general
If the adiabatic condition is not satisfied, the system mayclass of symmetrical systems with random or chaotic motion
not establish a stationary state during a bit duration, and theithin the subspace.

10° L ] FIG. 10. Amplification property as a function

05 ‘ ‘ ‘ ‘ 0 L ] of the parametep. (@) Time series of the en-
03| % ot | ] semble averagéy,) for several typical values of
L - p. (1) p=2.4,(2) p=3.1, and(3) p=3.4. Other

A AIN(YmadA)’

A 01 1 10° | — A=10°, c=18 1 T
T o1 3 ] o e—eﬁgj.cﬁ parameters ard=10"°, T=1000, andc=2.2.
b — A0 o2, ] i .
03 T ] ) (b) I as a function ofp for different values ofA
05, 1000 2000 3000 4000 5000 o, 25 3 35 4 andc. T=1000.

n p
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107 : ing process which introduces a noise-controlled time scale
into the system. When this time scale matches that of the
108 L i weak signal, the statistical synchronization of the tunneling
to the signal leads to resonant response to the signal in the
—10° L ] system. In the present mechanism of stochastic resonance,
the multiplicative noise does not induce transition between
10t | ] the two symmetrical component, and there does not exist a
i noise-induced time scale of the transition. The transition is
10° ‘ , ‘ induced by the weak signal itself in the symmetry breaking
2 25 3 35 4 case. A change of the level of the multiplicative noise
p changes the response time of the system. The resonance oc-

curs not because this response time matches the period of the
§ignal, but because the system responds quickly enough to
follow the switching of the signal and produces large output
quickly after a switching . The resonant phenomenon is not
IV. DISCUSSION restricted to periodic signals. We have employed different
équantities rather than the conventional signal-to-noise ratio

We demonstrate a new mechanism of stochastic res itable f . idal inout t tify the oh
nance in a general class of symmetrical dynamical system%u' avle for a sinusoidal input to guan ify the phenomenon.
(3) In our systems with symmetry breaking, although

with on-off intermittency and symmetry breaking. The sys- . R . .
tem has an invariant subspace whose stability is determinettli‘ere exist two distinguished symmetrical parts in the sys-

by the random or chaotic motion within the subspace. Closéem' there is not any clear form of threshold or barrier in the

to the critical point of the stability, the system is very sensi-sys_lfﬁm' h d trated in thi _ . |
tive to small perturbations, since the stgtkas a power-law € phenomenon demonstrated in his paper IS universa

distribution in a wide interval 10"<|y|<ys. The behav- in a class of systems. Many systems, for example, _symmetri-
ior of the system response to a weak binary signal can bgal[y coupled identical chaotic systerfk2,16-1§ or mter- :
understood by the competition between the drift and the dif2Sting stranger attractof$9), can be reduced to a form simi-

fusion in the Brownian motion model derived from the linear lar to the systems discussed in this paper, and we may expect
to observe similar phenomenon around the critical point of

dynamics closed to the invariant subspace. When the diffu e )

sion becomes dominant for the paramgtetose to the criti- synchronization. Howe\(er, in such systems, a change of th_e

cal point of stability, the system attains the ability of ampli- parameter qf t.he coupling strgngj[h may c_:hange the F:haOtIC
dynamics within the synchronization manifold, and this can

fication of a very weak signal, not via additive noise, but viab . bout additional lication into th ¢
multiplicative noise. When the paramefeidetermining the ring about additional compiication Into the System response
to a weak signal. This will be a topic for future study.

stability varies across the critical point from below to above, . . . ;
y b The behavior of on-off intermittency or bubbling may be

the sensitivity to the weak signal increases and then de- g L 7
creases after reaching a maximum, displaying the pheno 1armful in some applications, such as secure communication

enon of stochastic resonance. The resonance occurs when gr;]g sylrjtchronlzhatlon c;f chao[SZbO], dbefausz lI)n lpract|.c?
system can have access to the level of the weak signal /gh-qualily synchronization can be destroyed by farge inter-

become sensitive to the switching of the signal, and produc@quant bursts from Fhe synchronization manifold due to un-
large output quickly at the same time. avoidable perturbationf9—12]. We demonstrate that such

There are several differences of this mechanism of Stopeh?(wgr, hlowezj/(?dr{ can tl)? ertnplqyedh to antl)'fy extrerrgelyt
chastic resonance to that in a noisy bistable or threshold sy veak signal, and the ampiitication 1S shown 1o be very robus
o0 additive noise. This may lead to useful applications of the

tem. ) S . : :
(1) The source of noise is not additive but multiplicative, behavior which is quite universal in many systems.

wh|gh is !nherent from the random or chaotic motion within ACKNOWLEDGMENTS
the invariant subspace.

(2) In a noisy bistable or threshold system, the weak sig- This work was supported in part by Research Grant No.
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rier or the threshold. The additive noise induces such tunneks supported by NSTB.

FIG. 11. Robustness of the stochastic resonance to additiv
noise.A=10"", T=1000.
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